Finans formler | Emneopgave | Matematik

Indholdsfortegnelse
Simpel Opsparing, Rentesregning
Opgave a
Rentesregning:

Opgave B

Almindelig Opsparing, Fremtidsværdi Af en Annuitet
Opgave C
Annuitetsregning:

Afbetaling På Gæld, Nutidsværdi Af en Annuitet
Opgave D

Opgave E
Opgave F

Opgave G
- Ydelse:
- Rentebeløb:
- Afdrag:
- Restgæld:

Opgave H
Opgave 1 - Et 10-årigt Overblik Over to Forskellige Lån

Opgave 2 - Oplysning Om Hvad Restgælden Er På De to Lån Efter 5 År

Opgave 3 - Fordele Og Ulemper

Opgave 4 - Hvordan Kan Hun Låne Penge Til Udbetaling Og Hvad Vil Det Koste I Ydelser Per År?
- Ydelsen Første 5 År:
- Ydelsen Sidste 5 År:

Uddrag
OPGAVE A
Rentesregning:
Når man snakker om rentesregning sætter man et beløb ind på en konto, som så forrentes hver termin.

Kn:
Kn er fremtidsværdien eller også kaldet slutværdien.
Man beregner, hvad man vil have opsparet ved en given rente og efter x antal år.
Man regner fremtidsværdien, når man vil fremskrive et beløb.

Formlen for Kn:
Kn = k0*(1+r) n

Kn = 3000*(1+0,035) 15= 5026,05kr.

Eksempel:
Sarah sætter 5000 kr. ind i banken til en rente på 5%. Renten tilskrives årligt. Nu vil Sarah regne ud hvor mange penge hun har efter 10 år.

Kn=5000*(1+0,05)10 = 8144,47 kr.
Sarah har efter 10 år 8144,47 kr. på sin konto.

K0:
K0 er nutidsværdien eller også kaldet startværdien.
Man beregner hvor mange penge man skal sætte i banken til en bestemt rente og tid for at få x antal kroner.
Man regner nutidsværdien når man vil tilbageføre et beløb.

Formlen for K0:
K0 = Kn • (1 + r) −n

Eksempel:
Sarah vil sætte penge banken, hvor der årligt bliver tilskrevet 5% i renter.

Hun vil have pengene stående i 15 år. Efter 15 år vil Sarah gerne have sparet 20.000 kr. op. Hvor mange penge skal Sarah sætte i banken?

K0= 20000 • (1 + 0,05) −15 = 9620,34 kr.
Sarah skal sætte 9620,34 kr. ind i banken for at nå at spare 20.000 kr. op efter 15 år til en rente på 5%.

---

OPGAVE C
Annuitetsregning:

Annuitetsregning kendetegnes ved en fast ydelse (y) der tilskrives ved en fast termin (n) ved en fast rente (r). Både ydelsen og renten er den samme ved alle terminer.

Parametre i annuitetsregning:

An:
An slutbeløbet på kontoen efter n indbetalinger. Kaldes også fremtidsværdien. Ved beregning af A0 benyttes opsparingsformlen.

Man beregner An for at finde fremtidsværdien af det beløb man har sat i banken efter n indbetalinger og med en given rente.

Formlen for An:
a_n=y*((1+r)^n-1)/r
a_n=2000*((1+0,005)^16-1)/0,005 = 33.228,46

Eksempel:
Naja sætter 5.000 kr. ind på en konto årligt i 20 år. Den årlige rente er på 1,8%. Hvor mange penge kan Naja hæve efter 20 år?

a_n=5000*((1+0,018)^20-1)/0,018 = 119.096,60 kr
Naja kan efter 20 år hæve 119.096,60 kr. fra sin konto.

Sådan får du adgang til hele dokumentet

Byt til nyt Upload en af dine opgaver og få adgang til denne opgave
  • Opgaven kvalitetstjekkes
  • Vent op til 1 time
  • 1 Download
  • Minimum 10 eller 12-tal
Premium 39 DKK pr måned Få adgang nu