Differentialregning – Emneopgave Matematik

Hvad er differentialregning for noget?
Differentialregning benyttes når man skal bestemme hvor hurtigt en funktion vokser/aftager i et bestemt punkt.

Hvor møder vi differentialregning?
Differentialregning er en regnings...


Karakter: 10 tal

Uddannelse: HHX

Ord: 979

5 Stjerner

Andengradspolynomier – Emneopgave Matematik

Hvad er et andengradspolynomium?
f(x)=ax^2+bx+c

Hvordan ser grafen for et andengradspolynomium ud?
Redegørelse for forskrift og graf?...


Karakter: 10 tal

Uddannelse: HHX

Ord: 236

5 Stjerner

Binomialfordelingen – Emneopgave Matematik

Målet er, at du kan redegøre for binomialfordelingen herunder de parametre der indgår og deres betydning. Du skal kunne redegøre for begrebet stikprøve og for hvad et konfidensinterval er og hvordan et konfidensinterval for en p-værdi (en andel...


Karakter: 10 tal

Uddannelse: HHX

Ord: 1723

5 Stjerner

Normalfordeling – Emneopgave Matematik

Målet er, at du kan redegøre for Normalfordelingen herunder de parametre der indgår og deres betydning. Du skal kunne redegøre for begrebet stikprøve og for hvad et konfidensinterval er og hvordan et konfidensinterval for en middelværdi (et gen...


Karakter: 10 tal

Uddannelse: HHX

Ord: 1553

5 Stjerner

Lineær programmering – Emneopgave Matematik

Hvad er lineær programmering og hvordan anvendes dette?
Lineære programmering er en metode til at maksimere en lineær funktion, så det overholder x antal uligheder.

Lineær programmering bruges ofte til at lave en optimering...


Karakter: 10 tal

Uddannelse: HHX

Ord: 744

5 Stjerner

Eksponentielle Funktioner Noter til Prøve

Kendetegnede ved eksponentielle funktioner er, at det er en graf, der stiger hurtigere og hurtigere eller aftager langsommere og langsommere. Grafen stiger med en given % pr. enhed på x-aksen.
Grundformlen for en eksponentiel funktion er f(x...


Karakter: 10 tal

Uddannelse: HHX

Ord: 749

5 Stjerner

Matematik aflevering hhx Juni & December 2012

Opgave 4
Funktionen f er givet ved forskriften: f(x)=-x2+12x+3
a1) Bestem f’(x):
f’(x)=-2x+12
a2) Bestem monotoniforholdene:
Når f’(x)=0 er det funktionens toppunkt.
-2x+12=0
-2x=-12
-x=-...


Karakter: 10 tal

Uddannelse: HHX

Ord: 920

5 Stjerner